Quantitative Aptitude Ques 125
Question: The interior angle of a regular polygon exceeds its exterior angle by $ 108{}^\circ . $ The number of sides of the polygon is
Options:
A) 16
B) 12
C) 14
D) 10
Show Answer
Answer:
Correct Answer: D
Solution:
- Let the exterior angle be x.
$ \therefore $ Interior angle $ =x+108{}^\circ $
$ \because $ $ x+x+108{}^\circ =180{}^\circ $
$ \Rightarrow $ $ 2x=72{}^\circ $
$ \Rightarrow $ $ x=36{}^\circ $
$ \therefore $ Number of sides $ =\frac{360{}^\circ }{36{}^\circ }=10 $ $ {{[ \because number,of,sides=\frac{\text{360 }{}^\circ}{exterior,angle} ]}^{{}}} $