Time And Work Ques 7

Question-

18 men can complete a project in 30 days and 16 women can complete the same project in 36 days. 15 men start working and after 9 days they are replaced by 18 women. In how many days will 18 women complete the remaining work?

(1) 20

(2) 30

(3) 26

(4) 28

(5) 24

(IBPS Bank PO/MT CWE-V (Preliminary) 10.10.2015)

Show Answer

Correct Answer: 7-(5)

Solution: (5) Work done by 15 men in 9 days $=W_{2}$ (let)

$\therefore \frac{M_{1} D_{1}}{W_{1}}=\frac{M_{2} D_{2}}{W_{2}}$

$\Rightarrow \frac{18 \times 30}{1}=\frac{15 \times 9}{W_{2}}$

$\Rightarrow 18 \times 30 \times W_{2}=15 \times 9$

$\Rightarrow W_{2}=\frac{15 \times 9}{18 \times 30}=\frac{1}{4}$

Remaining work $=1-\frac{1}{4}=\frac{3}{4}$

Again, 16 women complete the project in 36 days.

$\therefore \frac{M_{1} D_{1}}{W_{1}}=\frac{M_{2} D_{2}}{W_{2}}$

$\Rightarrow \frac{16 \times 36}{1}=\frac{18 \times D_{2}}{\frac{3}{4}}$

$\Rightarrow 18 \times D_{2}=\frac{3}{4} \times 16 \times 36$ $=27 \times 16$

$\Rightarrow D_{2}=\frac{27 \times 16}{18}=24$ days