Number System Ques 16

Question

The product of digits of a 2-digit number $(X)$ is 16 . When the digits of $X$ are reversed, the resultant number is 54 more than $X$. What is the value of $75 \%$ of $X$ ?

(1) 15

(2) 20

(3) 21

(4) 11

(5) 61.5

(IBPS RRBs Officer CWE (Prelim Exam) 11.08.2018)

Show Answer

Answer: (3)

Solution: (3)

Let the number be $10 x+y$.

$\therefore x y=16 \quad $ …(i)

Number obtained after reversing the digits $=10 y+x$

According to the question,

$10 y+x-10 x-y=54$

$\Rightarrow 9 y-9 x=54$

$\Rightarrow y-x=6$

$\therefore(x+y)^{2}=(y-x)^{2}+4 x y$ $=(6)^{2}+4 \times 16$ $=36+64=100$

$\Rightarrow x+y=\sqrt{100}=10 \quad $ …(iii)

On adding equations (ii) and (iii),

$2 y=16 \Rightarrow y=8$

$\therefore x=2$

$\Rightarrow$ Number $=28=X$

$\therefore 75 \%$ of $28=\frac{28 \times 75}{100}=21$