Number System Ques 14

Question

$\left(x^{2 a}\right)^{b}=\sqrt{x^{\frac{4 b}{c}}}$ and $\frac{x^{4 b}}{x^{3 a}}$ $=x^{3(a-b)} \cdot x^{b}, a, b$ and $c$ being natural numbers.

(1) $a \neq b \neq c$

(2) $a=b \lt c$

(3) $a \lt b=c$

(4) $a=b=c$

(5) None of these

(IBPS Bank PO/MT CWE (Main) 18.11.2016)

Show Answer

Answer: (4)

Solution: (4)

$\left(x^{2 a}\right)^{b}=(x)^{\frac{4 b}{2 c}}$

$\Rightarrow 2 ab=\frac{2 b}{c} $

$\Rightarrow a c=1$

$a=c=1[\because$ Both $a$ and $c$ are natural numbers]

$\frac{x^{4 b}}{x^{3 a}}=x^{3(a-b)} \cdot x^{b}$

$\Rightarrow x^{4 b-3 a}=x^{3 a-2 b}$

$\Rightarrow 4 b-3 a=3 a-2 b$

$\Rightarrow 6 b=6 a$

$\Rightarrow a=b$

From (i) and (ii) we have,

$a=b=c$