Miscellaneous Question 87
- Train $X$ crosses train $Y$ of 300 metre length running in opposite direction in 10 seconds. Train X can cross train $Y$ running in the same direction, at the speed of $60$ $ km / h$ in 30 seconds. What is the speed of the train $X$ whose length is 210 metre? ( in metre per second)
(1) $\frac{51}{3}$
(2) $\frac{77}{3}$
(3) $\frac{101}{3}$
(4) $\frac{82}{3}$
(5) $\frac{91}{3}$
(IBPS RRBs Officer Scale-I CWE Main Exam, 13.10.2019)
Show Answer
Correct Answer: 87. (3)
Solution: 87. (3) Speed of train $Y=60 $ $\mathrm{km} / \mathrm{h}$
$=60 \times\left(\frac{5}{18}\right) $ $\mathrm{m} / \mathrm{s}=\frac{50}{3} $ $\mathrm{m} / \mathrm{s}$
Relative speed
$=$ Speed of $X-$ Speed of Y
$=\frac{510}{30}$
$\therefore \mathrm{S}_{1}-\frac{50}{3}=17$
$\Rightarrow \mathrm{S}_{1}=17+\frac{50}{3}=\frac{51+50}{3}$
$=\frac{101}{3}$ metre $/$ second