Miscellaneous Question 82
- A boat can travel $5.2 $ $km$ downstream in 13 minutes. If the speed of the water current is 1 $\frac{1}{5}$ th of the speed of the boat in still water, how much time will the boat take to cover $48$ $ km$ upstream? (in hours)
(1) 4
(2) 6
(3) 2
(4) 3
(5) 5
IBPS Bank PO/MT CWE (Prelim Exam) 19.10.2019
Show Answer
Correct Answer: 82. (4)
Solution: 82. (4) Speed of boat in still water $=$ $5 x $ $\mathrm{kmph}$.
$\therefore \quad$ Speed of current $=x$ $ \mathrm{kmph}$.
$\therefore \quad$ Rate downstream $=6 x$
$=\left(\frac{5.2}{13}\right) $ $\mathrm{kmph}$.
$\Rightarrow 6 x=\frac{5.2 \times 60}{13}=24$
$\Rightarrow x=\frac{24}{6}=4$ $ \mathrm{kmph}$.
$\therefore \quad$ Rate upstream $=5 x-x$
$=4 x $ $\mathrm{kmph} =16 $ $\mathrm{kmph}$.
$\therefore \quad$ Time taken in covering 48
$\mathrm{km} =\frac{48}{16}=3$ hours