Miscellaneous Question 43

  1. $A B C$ is an equilateral triangle inscribed in a circle with centre $O$.

Quantity I : Value of OD

Quantity II : Value of BD

(1) Quantity I $>$ Quantity II (2) Quantity I < Quantity II

(3) Quantity I $\leq$ Quantity II

(4) Quantity I $\geq$ Quantity II

(5) Quantity I = Quantity II or No relation.

Show Answer

Correct Answer: 43. (5)

Solution:

  1. (5)

$\angle \mathrm{ABD}=90^{\circ}[\because \mathrm{AD}$ is diameter $]$

$\angle \mathrm{BDA}=\angle \mathrm{BCA}=60^{\circ}$

[Angle subtented by same arc]

$\therefore$ In $\triangle \mathrm{BOD}$,

$\angle \mathrm{OBD}=\angle \mathrm{ODB}=60^{\circ}$

$[\because \mathrm{OB}=\mathrm{OD}]$

$=\angle \mathrm{BOD}=60^{\circ}$ $\Rightarrow \triangle \mathrm{BOD}$ is equilateral.

$\therefore \mathrm{OD}=\mathrm{BD}$.

Aliter :

Diameter $\mathrm{AD}$ will bisect $\angle \mathrm{BAC} \Rightarrow$ $\angle \mathrm{BAD}=30^{\circ}$

In $\triangle \mathrm{BAD}$,

$\angle \mathrm{ABD}=90^{\circ}$

$\angle \mathrm{BAD}=30^{\circ}$

$[\because$ AD is diameter]

$\Rightarrow \angle \mathrm{BDA}=60^{\circ}$

$\Rightarrow \mathrm{BD}=\frac{1}{2} \mathrm{AD}=\mathrm{OD}$.