Miscellaneous Question 36
- A boat travels $65 $ $km$ downstream in $6$ hrs $30$ minutes, when it is travelling in a stream $\left(S_{1}\right)$. If this boat travels in another stream $\left(S_{2}\right.$ whose speed is $10 \%$ more than that of $S_{1}$ it covers $58$ $ km$ upstream in $10 $ hrs. What is the speed of $S_{2}$ ? (in $km / hr$ ). (Assume the boat’s speed in still water in both streams remains the same)
(1) 2.2
(2) 1.5
(3) 1.8
(4) 2.4
(5) 2
(IBPS RRBs Officers CWE (Prelim Exam) 10.09.2017)
Show Answer
Correct Answer: 36. (1)
Solution: 36. (1) Speed of current $\left(S_{1}\right)$ $=y$ $ \mathrm{kmph}$
Speed of boat in still water $=x $ $\mathrm{kmph}$.
$\therefore$ Rate downstream
$=x+y=\left(\frac{65}{\frac{13}{2}}\right)$ $ \mathrm{kmph}$
$=\left(\frac{65 \times 2}{13}\right) $ $\mathrm{kmph}$
$=10 $ $\mathrm{kmph}$
Speed of current $\left(\mathrm{S}_{2}\right)$
$=\frac{11 y}{10} $ $\mathrm{kmph}$
$\therefore$ Rate upsteam $=x-\frac{11 y}{10}$
$=5.8 $ $\mathrm{kmph}$
$\therefore x+y-x+\frac{11 y}{10}$
$=(10-5.8)$ $ \mathrm{kmph}$
$\Rightarrow \frac{10 y+11 y}{10}=4.2$
$\Rightarrow \frac{21 y}{10}=4.2 \Rightarrow y=\frac{4.2 \times 10}{21}$
$=2 $ $\mathrm{kmph}$
$\Rightarrow$ Speed of current $\left(\mathrm{S}_{2}\right)$
$=\left(\frac{11 \times 2}{10}\right) $ $\mathrm{kmph}$
$=2.2 $ $\mathrm{kmph}$