Miscellaneous Question 28

  1. $a>b>0$

For all the integral values of $a$ and $b$

$x=\frac{a^{3}+b^{3}}{\left(a^{2}-b^{2}\right){(a-b)^{2}+a b }}$

Quantity I : $x$

Quantity II : 1

(1) I $<$ II

(2) I $\leq$ II

(3) I $>$ II

(4) $I=I$

(5) No relation

Show Answer

Correct Answer: 28. (1)

Solution: 28. (1) Given:

$x=\frac{a^{3}+b^{3}}{\left(a^{2}-b^{2}\right)\left\{(a-b)^{2}+a b\right\}}$

$\Rightarrow x=\frac{(a+b)\left(a^{2}-a b+b^{2}\right)}{(a+b)(a-b)\left\{\left(a^{2}-2 a b+b^{2}\right)+a b\right\}}$

$\Rightarrow x=\frac{a^{2}-a b+b^{2}}{(a-b)\left(a^{2}-a b+b^{2}\right)}$

$\Rightarrow x=\frac{1}{a-b}$

Since, both ’ $a$ ’ and ’ $b$ ’ are positive integers and also $a>b$, $\Rightarrow a-b>1$

$\Rightarrow \frac{1}{a-b}<1$

$\therefore x<1$