Miscellaneous Question 27
- In a day a boatman makes 4 trips from $A$ to $B$ and 3 trips back from $B$ to $A$. The current in the river flows from $A$ to $B$. The ratio of total time taken for down stream trips to up stream trips is $4: 5$. If he covers a distance of $15 $ $km$ against the current in 1 hour 15 minutes, then what is the speed of the current?
(1) $2$ $ km / h$
(2) $3$ $ km / h$
(3) $4$ $ km / h$
(4) $5$ $ km / h$
(5) None of these
Show Answer
Correct Answer: 27. (3)
Solution: 27. (3) $d$ : downstream,
$u$ : upstream
$\mathrm{V}_{\mathrm{u}}=\frac{15 \mathrm{km}}{\left(\frac{5}{4}\right) h r}=12 \mathrm{km} / \mathrm{h}$ $\quad$ ……..(i)
$\frac{t_{d}}{t_{u}}=\frac{4}{5}$
$\therefore \frac{V_{d}}{V_{u}}=\frac{\frac{S_{d}}{t_{d}}}{\frac{S_{u}}{t_{u}}}=\frac{\frac{S_{d}}{S_{u}}}{\frac{t_{d}}{t_{u}}}=\frac{\frac{4}{3}}{\frac{4}{5}}$
$=\frac{5}{3}$
Let $V_{\mathrm{s}}$ be the speed of the boatman in still water and $V_{c}$ the speed of the current
$\Rightarrow \frac{V_{s}+V_{c}}{V_{s}-V_{c}}=\frac{5}{3}$
Using reverse componendo - dividendo, we get
$\frac{V_{s}}{V_{c}}=\frac{4}{1} \Rightarrow V_{\mathrm{s}}=4 V_{\mathrm{c}}$
Now $V_{\mathrm{u}}=V_{\mathrm{s}}-V_{\mathrm{c}}=4 V_{\mathrm{c}}-V_{\mathrm{c}}$
$=3 \mathrm{V}_{\mathrm{c}}=12 \mathrm{km} / \mathrm{hr} \quad $ [from (i)]
$\therefore V_{\mathrm{c}}=4 \mathrm{km} / \mathrm{hr}$