Miscellaneous Question 13
- Time taken by a boat in going upstream a certain distance is twice the time taken in going the same distance downstream. Find the speed of boat upstream if it covers $20$ $ km$ downstream in 1 hour 40 minutes.
(1) $6$ $ kmph$
(2) $7 $ $kmph$
(3) $6.5 $ $kmph$
(4) $7.2$ $ kmph$
(5) None of these
(IBPS Bank PO/MT CWE-V (Preliminary) 10.10.2015 Ist Sitting)
Show Answer
Correct Answer: 13. (1)
Solution: 13. (1) Speed of boat in still water $=$ $x$ kmph.
Speed of current $=y $ $\mathrm{kmph}$
Rate downstream $=(x+y) $ $\mathrm{kmph}$
Rate upstream $=(x-y)$ $ \mathrm{kmph}$.
According to the question,
$x+y=\frac{20}{1 \frac{40}{60}} \mathrm{kmph}$
$\Rightarrow x+y=\frac{20}{\frac{5}{3}}=\frac{20 \times 3}{5}$
$=12$ $ \mathrm{kmph}$
$\therefore \frac{2 \times 20}{x+y}=\frac{20}{x-y}$
$\Rightarrow 2 x-2 y=x+y$
$\Rightarrow x=3 y$
From equation (i),
$3 y+y=12$
$\Rightarrow 4 y=12 \Rightarrow y=\frac{12}{4}=3 $ $\mathrm{kmph}$
$\therefore x=3 \times 3=9$ $ \mathrm{kmph}$
$\therefore$ Rate upstream
$=(x-y) $ $\mathrm{kmph}$
$=9-3=6 $ $\mathrm{kmph}$