Miscellaneous Question 100
- A boat going downstream take 5 hours to cover a certain distance, while it takes 3 hours to cover 3
$\frac{3}{7}$ of the same distance running upstream, then what is the ratio of the speed of boat in still water to speed of stream?
(1) $6: 1$
(2) $1: 6$
(3) $1: 5$
(4) $5: 1$
(5) None of these
(IBPS RRBs Officer CWE Prelim Exam, 13.09.2020)
Show Answer
Correct Answer: 100. (1)
Solution: 100. (1) Suppose, distance $=d $ $\mathrm{km}$.
$\therefore$ Rate downstream $=x$
$=\frac{d}{5}$ $ \mathrm{kmph}$
Rate upstream $=y=\frac{3 d}{7 \times 3}$
$=\frac{d}{7} $ $\mathrm{kmph}$
$\therefore$ Speed of boat in still water
$=\frac{1}{2}(x+y)$ $ \mathrm{kmph}$
$=\frac{1}{2}\left(\frac{d}{5}+\frac{d}{7}\right)$ $ \mathrm{kmph}$
$=\frac{1}{2}\left(\frac{7 d+5 d}{35}\right) $ $\mathrm{kmph}$
$=\frac{6 d}{35}$ $ \mathrm{kmph}$
Speed of current $=\frac{1}{2}(x-y)$
$=\frac{1}{2}\left(\frac{d}{5}-\frac{d}{7}\right)$ $ \mathrm{kmph}$
$=\frac{1}{2}\left(\frac{7 d-5 d}{35}\right)$ $ \mathrm{kmph}$
$=\frac{d}{35} $ $\mathrm{kmph}$
$\therefore$ Required ratio
$=\frac{6 d}{35}: \frac{d}{35}=6: 1$