Mensuration Ques 38

Question

The area of first circle and circumference of second circle are $1386 cm^{2}$ and $176 cm$ respectively. There is a square whose side is $35 \frac{5}{7} \%$ of twice the sum of the radius of both the circles. Find the perimeter of the square (in $cm$ )?

(1) 132

(2) 136

(3) 140

(4) 116

(5) 124

(IBPS RRBs Officer CWE (Prelim Exam) 04.08.2019)

Show Answer

Correct Answer: (3)

Solution: (3)

Radius of first circle $=r_{1} cm$.

$\therefore \pi r_{1}^{2}=1386$

$\Rightarrow \frac{22}{7} \times r_{1}^{2}=1386$

$\Rightarrow r_{1}^{2}=\frac{1386 \times 7}{22}=441$

$\Rightarrow r_{1}=\sqrt{441}=21 cm$.

Radius of second circle $=r_{2} cm$.

$\therefore 2 \times \frac{22}{7} \times r_{2}=176$

$\Rightarrow r_{2}=\frac{176 \times 7}{2 \times 22}=28 cm$.

$\therefore$ Side of square $=2\left(r_{1}+r_{2}\right) \times \frac{250}{700}$

$=2 \times(21+28) \times \frac{25}{70}$

$=\frac{2 \times 49 \times 25}{70}=35 cm$.

$\therefore$ Perimeter of square $=4 \times 35=140 cm$.