Mensuration Ques 29

Question

In the figure given below, $O$ is the centre of the circle. $\triangle AOB$ is an equilateral triangle while $\triangle ACB$ is isosceles with $AC=BC$. OP is drawn perpendicular to $AC$.

Quantity I : $\angle AOP$

Quantity II : $\angle BAP$

(1) $ I > II $

(2) $ I < II $

(3) $ I = II $

(4) $ 1 \leq II $

(5) Relationship can’t be established

(IBPS Bank PO/MT CWE (Main) 18.11.2016)

Show Answer

Correct Answer: (3)

Solution: (3)

$\angle AOB=60^{\circ}[\because \Delta$ is equilateral]

$\angle ACB=30^{\circ}[\angle AOB$ is central angle for $\angle ACB$ ]

In isosceles $\triangle$ ACB,

$AC=BC$

$\Rightarrow \quad \angle BAC=\angle ABC$ $=\frac{1}{2}\left(180^{\circ}-30^{\circ}\right)=75^{\circ}$

$\therefore \quad \angle BAP=75^{\circ}$

$\therefore \quad \angle OAP=\angle BAP-\angle BAO$ $=75^{\circ}-60^{\circ}=15^{\circ}$

Now, in right angled AOP,

$\angle AOP=180^{\circ}-\left(90^{\circ}+15^{\circ}\right)$ $=75^{\circ}$

From (i) and (ii) we have

$\angle AOP=\angle BAP$ i.e, $I=II$