Equations And Inequations Ques 63

I. $\frac{18}{x^{2}}+\frac{6}{x}-\frac{12}{x^{2}}=\frac{8}{x^{2}}$

II. $y^{2}+9.68+5.64=16.95$

Directions : In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer. If

(1) $x>y$

(2) $\quad x \geq y$

(3) $x<y$

(4) $x \leq y$

(5) $x=y$ or the relationship cannot be established

(Bank Of Baroda PO Exam.13.03.2011)

Show Answer

Correct Answer: 3

Solution: (3) I. $\frac{18}{x^{2}}-\frac{12}{x^{2}}-\frac{8}{x^{2}}=\frac{-2}{x^{2}}$

$\Rightarrow \frac{18-12-8}{x^{2}}=\frac{-6}{x}$

$\Rightarrow \frac{-2}{x^{2}}=\frac{-6}{x} \Rightarrow \frac{2}{x}=6 \Rightarrow x=\frac{1}{3}$

$\Rightarrow x=\frac{2}{6}=\frac{1}{3} \Rightarrow x^{3}=\frac{1}{27}=0.037$

II. $y^{3}=16.95-9.68-5.64$ $=1.63$

Clearly, $x<y$