Equations And Inequations Ques 42
I. $3 x^{2}+10 x+3=0$
II. $2 y^{2}+15 y+27=0$
Directions : In the following questions, two equations numbered I and II are given. You have to solve both the equations and give answer If
(1) $x<y$
(2) $x>y$
(3) $x \leq y$
(4) $x \geq y$
(5) $\quad x=y$ or the relationship cannot be established
(IBPS Bank PO/MT (Pre.) Exam, 23.10.2016)
Show Answer
Correct Answer: 42.(4)
Solution: (4) I. $3 x^{2}+10 x+3=0$
$\Rightarrow 3 x^{2}+9 x+x+3=0$
$\Rightarrow 3 x(x+3)+1(x+3)=0$
$\Rightarrow(x+3)(3 x+1)=0$
$\Rightarrow x=-3$ or, $-\frac{1}{3}$
II. $2 y^{2}+15 y+27=0$
$\Rightarrow 2 y^{2}+6 y+9 y+27=0$
$\Rightarrow 2 y(y+3)+9(y+3)=0$
$\Rightarrow(y+3)(2 y+9)=0$
$\Rightarrow y=-3$ or, $\frac{-9}{2}$
Clearly, $x \geq y$