Equations And Inequations Ques 42

I. $3 x^{2}+10 x+3=0$

II. $2 y^{2}+15 y+27=0$

Directions : In the following questions, two equations numbered I and II are given. You have to solve both the equations and give answer If

(1) $x<y$

(2) $x>y$

(3) $x \leq y$

(4) $x \geq y$

(5) $\quad x=y$ or the relationship cannot be established

(IBPS Bank PO/MT (Pre.) Exam, 23.10.2016)

Show Answer

Correct Answer: 42.(4)

Solution: (4) I. $3 x^{2}+10 x+3=0$

$\Rightarrow 3 x^{2}+9 x+x+3=0$

$\Rightarrow 3 x(x+3)+1(x+3)=0$

$\Rightarrow(x+3)(3 x+1)=0$

$\Rightarrow x=-3$ or, $-\frac{1}{3}$

II. $2 y^{2}+15 y+27=0$

$\Rightarrow 2 y^{2}+6 y+9 y+27=0$

$\Rightarrow 2 y(y+3)+9(y+3)=0$

$\Rightarrow(y+3)(2 y+9)=0$

$\Rightarrow y=-3$ or, $\frac{-9}{2}$

Clearly, $x \geq y$