Equations And Inequations Ques 22

I. $\sqrt{901} x+\sqrt{1295}=0$

II. $(257)^{1 / 4} y+(217)^{1 / 3}=0$

Directions : In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer

(1) if $x>y$

(2) if $x \geq y$

(3) if $x<y$

(4) if $x<y$

(5) if $x=y$ or the relationship cannot be established

(UCO Bank PO Exam. 30.01.2011)

Show Answer

Correct Answer: (1)

Solution: (1) I. $\sqrt{901} x=-\sqrt{1295}$

$$ \begin{aligned} & \Rightarrow \sqrt{900} x \approx-\sqrt{1296} \\ & \Rightarrow 30 x \approx-36 \\ & \Rightarrow x \approx \frac{-36}{30} \approx \frac{-6}{5} \approx-1.2 \\ & \text { II. }(256)^{\frac{1}{4}} y \approx-(216)^{\frac{1}{3}} \\ & \Rightarrow 4 y \approx-6 \\ & \Rightarrow y \approx \frac{-6}{4} \approx-1.5 \end{aligned} $$

Clearly, $x>y$