Equations And Inequations Ques 11
I. $\frac{25}{x^{2}}-\frac{12}{x}+\frac{9}{x^{2}}=\frac{4}{x^{2}}$
II. $9.84-2.64=0.95+y^{2}$
Directions : In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer
(1) if $x>y$
(2) if $x \geq y$
(3) if $x<y$
(4) if $x<y$
(5) if $x=y$ or the relationship cannot be established
(UCO Bank PO Exam. 30.01.2011)
Show Answer
Correct Answer: (2)
Solution: (2) I. $\frac{25}{x^{2}}+\frac{9}{x^{2}}-\frac{4}{x^{2}}=\frac{12}{x}$
$$ \begin{aligned} & \Rightarrow \frac{25+9-4}{x^{2}}=\frac{12}{x} \\ & \Rightarrow \frac{30}{x}=12 \Rightarrow 12 x=30 \\ & \Rightarrow x=\frac{30}{12}=\frac{5}{2}=2.5 \end{aligned} $$
II. $9.84-2.64=0.95+y^{2}$
$$ \begin{aligned} & \Rightarrow 7.2-0.95=y^{2} \\ & \Rightarrow 6.25=y^{2} \\ & \Rightarrow y=\sqrt{6.25}= \pm 2.5 \end{aligned} $$
Clearly, $x \geq y$