Equations And Inequations Ques 102

I. $\frac{5}{7}-\frac{5}{21}=\frac{\sqrt{x}}{42}$

II. $\frac{\sqrt{y}}{4}+\frac{\sqrt{y}}{16}=\frac{250}{\sqrt{y}}$

Directions : In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer If

(1) $x>y$

(2) $x \geq y$

(3) $x<y$

(4) $x \leq y$

(5) $x=y$ or the relationship cannot be estab lished

(Allahabad Bank PO Exam. 17.04.2011)

Show Answer

Correct Answer: (3)

Solution: (3) I. $\frac{5}{7}-\frac{5}{21}=\frac{\sqrt{x}}{42}$

$\Rightarrow \frac{15-5}{21}=\frac{\sqrt{x}}{42}$

$\Rightarrow \sqrt{x}=\frac{10}{21} \times 42=20$

$\therefore x=20 \times 20=400$

II. $\frac{\sqrt{y}}{4}+\frac{\sqrt{y}}{16}=\frac{250}{\sqrt{y}}$

$\Rightarrow \frac{4 \sqrt{y}+\sqrt{y}}{16}=\frac{250}{\sqrt{y}}$

$\Rightarrow 5 \sqrt{y} \times \sqrt{y}=250 \times 16$

$\Rightarrow 5 y=250 \times 16$

$\Rightarrow y=\frac{250 \times 16}{5}=800$

Clearly, $x<y$