Data Sufficiency Question 58

  1. Find the speed of train.

I. The train crosses a 120 metre long platform in 10 seconds and a vertical pole in 6 seconds while travelling at the same speed.

II. The train 180 metre long passes a person running at the speed of $1.2 m / sec$ in the same direction in which the train is running in 6.25 seconds.

Show Answer

Correct Answer: 58. (3)

Solution: 58. (3) From statement I,

Let the length of train be $x$ metre.

$\therefore$ Speed of train

$=\frac{x+120}{10}=\frac{x}{6}$

$\Rightarrow \frac{x+120}{5}=\frac{x}{3}$

$\Rightarrow 5 x=3 x+360$

$\Rightarrow 2 x=360 \Rightarrow x=\frac{360}{2}$ $=180$ metre

$\therefore$ Speed of train $=\frac{x}{6}=\frac{180}{6}$

$=30 \mathrm{~m} / \mathrm{sec}$.

From statement II,

Let the speed of train be $x \mathrm{~m}$./ sec.

$\therefore \frac{180}{x-1.2}=6.25$

$\Rightarrow 6.25 x-6.25 \times 1.2=180$

$\Rightarrow 6.25 x=180+7.5=187.5$

$\Rightarrow x=\frac{187.5}{6.25}=30 \mathrm{~m} / \mathrm{sec}$.