Data Sufficiency Question 57
- What is the volume of right circular cylinder (in $cm^{3}$.) ?
I. The curved surface area of the cylinder is $3168 cm^{2}$.
II. The height of the cylinder is equal to the height of the right circular cone whose volume is $1232 cm^{3}$ and radius is $7 cm$.
Show Answer
Correct Answer: 57. (5)
Solution: 57. (5) From statement I,
$2 \pi r h=3168 \ldots$ (i)
From statement II,
$\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{~h}=1232$
$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 h=1232$
$\Rightarrow h=\frac{1232 \times 3}{22 \times 7}=24 \mathrm{~cm}$.
From equation (i),
$2 \times \frac{22}{7} \times r \times 24=3168$
$\Rightarrow r=\frac{3168 \times 7}{2 \times 22 \times 24}=21 \mathrm{~cm}$.
$\therefore$ Volume of cylinder
$=\frac{22}{7} \times 21 \times 21 \times 24$
$=33264$ cu.cm.